

Center for Hydrometeorology & Remote Sensing University of California, Irvine

Advancing Week-2 Precipitation Prediction Using Convolutional Neural Network

Baoxiang Pan, Kuolin Hsu, Amir AghaKouchak, Soroosh Sorooshian

> Paper Number: H32B-03 December 12, 2017

Evolution of Predictive Skills for 500 hpa Geo Potential Height(GPH):

*Frédéric Vitart. Evolution of ECMWF sub-seasonal forecast skill scores. Quarterly Journal of the Royal Meteorological Society, 140(683):1889–1899, 2014. [†]National Center for Environmental Prediction, accesses July 20, 2015 Baoxiang (2017 AGU Fall Meeting

- 1. Precipitation Predictive Skill < Pressure Predictive Skill
 - Precipitation parameterization introduces significant error.

- 1. Precipitation Predictive Skill < Pressure Predictive Skill
 - Precipitation parameterization introduces significant error.
- 2. $\left|\frac{\partial(\text{Precipitation Predictive Skill})}{\partial(\text{Lead Time})}\right| > \left|\frac{\partial(\text{Pressure Predictive Skill})}{\partial(\text{Lead Time})}\right|$
 - Parameterization error is sensitive to dynamical deviation.

Motivation

On the Difficulty of Long Term QPF:

- 1. Dynamical Precipitation forecast assumes statistical connection between atmosphere dynamics and precipitation.
 - The connection is at computing step time scale(minutes).
 - The connection is sensitive to dynamical errors.
- 2. As dynamical errors increase with forecast lead time, precipitation predictability worsens.

¹ Charles, S. P., I. N. Smith, and J. P. Hughes, 2004: Statistical down- scaling of daily precipitation from observed and modelled atmospheric fields. Hydrol. Processes, 18, 1373–1394.

Motivation

On the Difficulty of Long Term QPF:

- 1. Dynamical Precipitation forecast assumes statistical connection between atmosphere dynamics and precipitation.
 - The connection is at computing step time scale(minutes).
 - The connection is sensitive to dynamical errors.
- 2. As dynamical errors increase with forecast lead time, precipitation predictability worsens.

A Possible Way Out:

- Is there a more reliable connection between precipitation and atmosphere dynamics at a less-resolved temporal scale?
 - Linear Regression using SLP provides equally competitive mean precipitation estimates at monthly scale[‡].
- Better alternative precipitation estimates can be achieved, provided that model offers more reliable prediction sources.

⁺ Charles, S. P., I. N. Smith, and J. P. Hughes, 2004: Statistical down- scaling of daily precipitation from observed and modelled atmospheric fields. Hydrol. Processes, 18, 1373–1394.

Apply the modern image processing techniques, specifically, **Convolutional Neural Network**, to explore the following questions:

- 1. Is there more reliable connection between precipitation and circulation at larger temporal scale?
- 2. Could we apply the connection for long-term precipitation prediction?

Study Area & Data

Source	Variable	Spatial Resolution	Temporal Resolution	Coverage
Reanalysis(NCEP)	P SLP	$2.5^\circ \times 2.5^\circ$	6 hour	1948-2017
Observation(CPC)	Р	$0.25^{\circ} imes 0.25^{\circ}$	daily	1948-2017
Hindcast(S2S)	P SLP	$1.5^\circ imes 1.5^\circ$	daily	NCEP:1999-2010 ECMWF:1995-2016

Methodology

1. Construct SLP-P connection using CNN

Methodology

1. Construct SLP-P connection using CNN

Convolutional Neural Network

1. Distill pressure features that influence precipitation.

2. Use these features to estimate precipitation.

Construct SLP-P Connection

Layer No.	Layer Type	Hyperparameter	
1	Normalization Layer		
2	Convolution Layer	Kernel Size: 5×5	
3	Pooling Layer	Kernel Size: 2×2	
4	Convolution Layer	Kernel Size: 3×3	
5	Pooling Layer	Kernel Size: 2×2	
6	Flatten Layer		
7	Dropout Layer	P=0.5	
8	Linear Layer		
9	Transform Layer	ReLu	
10	Batch Normalize Layer		
11	Dropout Layer	P=0.5	
12	Linear Layer		
13	Transform Layer	ReLu	
14	Linear Layer		
15	Batch Normalize Layer		

With the architecture constructed, parameters were initialized and trained using ADAptive Moment Estimation Method.

Construct SLP-P Connection

Layer No.	Layer Type	Hyperparameter	
1	Normalization Layer		
2	Convolution Layer	Kernel Size: 5×5	
3	Pooling Layer	Kernel Size: 2×2	
4	Convolution Layer	Kernel Size: 3×3	
5	Pooling Layer	Kernel Size: 2×2	
6	Flatten Layer		
7	Dropout Layer	P=0.5	
8	Linear Layer		
9	Transform Layer	ReLu	
10	Batch Normalize Layer		
11	Dropout Layer	P=0.5	
12	Linear Layer		
13	Transform Layer	ReLu	
14	Linear Layer		
15	Batch Normalize Layer		

With the architecture constructed, parameters were initialized and trained using ADAptive Moment Estimation Method.

Comparison with other Convolution Models

Model	Kernel	Convolution Window	Dimension	Utility
Fourier Transform	Fixed(Sin,Cos)	Fixed $(-\infty \text{ to } \infty)$	usually 1-2D	Periodicity
Wavelet Transform	Selective(Meyer,Morlet,Mexican hat,etc.)	Tunable	usually 1-2D	Feature extraction
CNN	Trainable	Tunable	No limitation	Machine learning

$$r = \frac{E[(P_{obser} - \overline{P_{obser}})(P_{simu} - \overline{P_{simu}})]}{\sigma_{P_{obser}}\sigma_{P_{simu}}}$$
$$NSE = 1 - \frac{\sum(P_{obser} - P_{simu})^{2}}{\sum(P_{obser} - \overline{P_{obser}})^{2}}$$

$SLP_{\textit{Reanalysis}} \rightarrow \! \mathsf{P}_{\textit{Reanalysis}}(\mathsf{R2R})$

CHRS 10

Hourly Scale

Weekly Scale

Weekly Scale

SLP-P Connection Summary for Different Scales

Statistics at Weekly Scale

With the connection constructed, now we apply the trained CNN to process GCM SLP hindcasts for alternative precipitation estimates. Results are compared with reanlaysis data and gauge observation data.

FTEOROLO

GR

15

FTEOROLO

GR

16

- There is a less-resolved but more stable connection between precipitation and circulation for the West Coast United States.
 - CNN works better at capturing the connection from hourly to weekly scales.
 - ► The connection transfers from nonlinear to linear as scale expands.
- We can have alternative better Week-2 precipitation estimates(with r and NSE improved by 0.1 on average), since model offers more reliable circulation predictions.

Center for Hydrometeorology & Remote Sensing University of California, Irvine

2017 AGU Fall Meeting

New Orleans ightharpoonup

Scan the QR code for online version of the slides:

Center for Hydrometeorology & Remote Sensing University of California, Irvine

2017 AGU Fall Meeting

New Orleans J

Scan the QR code for online version of the slides:

Please Vote me(H32B-03) for the Outstanding Student Paper Award!

Thank you. Any comments or suggestions?